Alpha Five Naming Recommendations

by Cal Locklin, Oct. 2, 2002

The purpose of this document is to present some naming guidelines which will make it much easier, faster, and significantly more efficient to run text searches in scripts or, especially, with the A5 documenter when debugging or updating. This increased efficiency can be translated into cost savings, reduced frustration, and happier customers because fewer items will be missed when making changes.

Although a fixed naming convention for all A5 developers might be useful, the primary purpose of this document is to provide some guidelines and examples.

The underlying principle can be summarized in one word: unique. By making the name of each field, index, variable, layout, etc. unique, text searches will be more precise thus allowing the developer to fully utilize the power of these text searches to quickly and efficiently update or debug an application.

EXAMPLES:

A prime example of a commonly used form name that is not unique is "Rep" (as in 'sales rep'). A text search on "rep" would find every instance of "Report", "Type: Report", "Print Report", "representing", "preparing", etc. I know this one particularly well because I once ran a search on someone else's application that had 5 pages of hits (about 20 per page) but only two were valid! A much better name would be "Sales_Rep".

Another common mistake is to name a form "Menu" - imagine how many references there are to 'menu' in one application! Instead, use names like "Menu_main", "Menu_maintenance", "Menu_reports", etc.

RECOMMENDATIONS:

The trick is to come up with a standardized method for creating unique names so a photographic memory isn't required in order to remember every name that has been used. The following guidelines are intended to do this.

1.	Field names, index names, and variable names should be unique from each other whenever possible. A common mistake is to give indexes or variables the same name as the field name. The solution I prefer is to use suffixes "f" for field names, "v" for variables, and "_" (underscore) for index names -- Cust_Namef for the field, Cust_Namev for variables, and Cust_Name_ (end with an underscore) for the index. Another option is to simply use different names in each case. For example: Zip4 as the field name, Zip_4 for the index, and Zp4 for the variable. However, since simply using different names isn't a "standardized" method, it is more prone to mistakes.��By using the underscore as a suffix for index names, they are easier for users to read. If a prefix such as "ndx" was used instead (similar to Access conventions), the need for longer names would be greater (see #6 below) and many users might find the index names less intuitive.��The logic for always using the field name suffix ("f") should be obvious. However, the reason for using the underscore on all index names needs a little explanation. Of course, using the underscore for an index that is based on a specific field (i.e., Cust_Namef => Cust_Name_) makes it easy to distinguish the two. The other advantage of putting the underscore on all developer-created indexes, even if the index is not based on a specific field, is that it allows you to distinguish indexes that you have created from indexes that are system generated (A5 will build its own indexes if necessary for set relationships and certain field rules) - this can be significant when updating the application or rebuilding indexes. For this reason, try to always follow the suffix rule - or whatever rule you choose - for indexes whether or not they are related to fields.��Another advantage to this technique of using standard suffixes is that it can make expressions easier to read. For example, in this function - LookupN("F", parentform:prod_id.text, "Pricef", "Child", "Prod_id_") - it is obvious without going to the help file that "Pricef" is a field name and "Prod_id_" is an index name.��Note: Many variable names have no relationship at all to the field names so leaving the "v" off of these 'unrelated' variable names will not effect text searches.

2.	Avoid using one name 'inside' another like Zipcode and Zipcode4. Better to use Zipcode and Zip4 or Zip_code4. Or, applying rule 1 above, Zipcodef is already unique from Zipcode4f. Another advantage in this case is that you could easily run a search for "zipcode" if you wanted to find all references to either Zipcodef or Zipcode4f. If you ran a search on just "zip" you might also find, for example, references to zip files used for backup routines.

3.	Use names consisting of at least two words for forms and other layouts to make duplication of text strings less likely. ie, never Menu but Menu_main. This is also a good idea for field names whenever possible.

4.	Never leave blank spaces in layout names. This eliminates the problem of searching a documenter and finding the text "401K Forms" somewhere else such as on a button when you really want to find only references to the form itself. Using an underscore instead of the blank space (401K_Form) will resolve most of these issues.

	NOTE: Alpha will not allow you to leave blank spaces in field, index, or variable names.

5.	Never use the same name for two different types of layout. In other words, don't have both a form and a report called "Customer_List"; instead, call one of them something different like "Cust_List". If you need an additional form or report that is similar, either give it a completely different name or call it Cust2_List rather than Cust_List2 so that the phrase "Cust_List" is not repeated. (This is another reason to use double names; "Cust2_List" may look strange but "Cust2omer" looks even stranger.) Of course, you could also eliminate "Cust_List" and just have "Cust_List1" and "Cust_List2". (I've considered using layout suffixes such as "r" for reports, "m" for forms (since "f" is already used for fields), "b" for browses, "l" for labels, and "t" for letters. This would probably be "good form" but I haven't found it to be worth the effort - yet.)

6.	Try to keep field names and index names to 10 characters or less. Although this is not specifically required by Alpha Five, there are certain situations during development or application updates which could cause longer names to become truncated - and truncated names will almost always cause problems that will have to be fixed before the database can be used again. Index names can similarly become truncated so starting with a 10 character name is always safe. This truncation won't happen if all files are handled and copied correctly but we all make mistakes occasionally.�(Yes, I've broken this rule a few times myself - I've also regretted it on a few occassions!)

	NOTE: Name length is generally not an issue with layout names (forms, reports, letters, etc.) although it is best to limit these names to 23 characters (one less than the 24 allowed) because the 24th letter can get truncated when copying them between tables. Version 5 has eliminated the 23 character issue when copying.

7.	Although not directly related to the previous naming recommendations, the recommendation of most A5 developers is that blank spaces should not be used in table and set names. There is at least one situation in A5v4, an XBasic append, where a blank space in a table name will cause the routine to fail. (This had not been checked in version 5 at the time of this writing.) In certain XBasic routines, such as the Append routine, a blank space in a table name will mean that some lines of the code must contain the blank space while other lines must replace the space with an underscore. Getting the combination correct can be frustrating to say the least. The underscore is easy to use and avoids the potential risks and significant time required to fix set relationships and script references should the need arise. Also, as discussed in #4 regarding layout names, using the underscore makes searches more accurate. (It's my personal opinion that they're also easier to read.)

Of course, there will always be times when a name, or portion of a name, gets duplicated by mistake but it will make documentation searches for debugging or updating much easier and faster if an honest attempt is made to follow these guidelines.

